
HFCommunity: A Tool to Analyze the Hugging
Face Hub Community

Adem Ait
IN3 – UOC

Barcelona, Spain
aait mimoune@uoc.edu

Javier Luis Cánovas Izquierdo
IN3 – UOC

Barcelona, Spain
jcanovasi@uoc.edu

Jordi Cabot
IN3 – UOC, ICREA

Barcelona, Spain
jordi.cabot@icrea.cat

Abstract—In recent years, empirical studies on software en-
gineering practices have primarily relied on general-purpose
social coding platforms such as GITHUB or GITLAB. With the
emergence of Machine Learning (ML), platforms specifically
designed for hosting and developing ML-based projects have
appeared, being HUGGING FACE HUB one of the most popular
ones. HUGGING FACE HUB focuses on facilitating the sharing of
datasets, pre-trained ML models and applications built with them
(spaces in HUGGING FACE HUB terminology). Besides, the Hub is
adding more and more collaborative features, such as issues and
pull requests, to facilitate the building of these artifacts within
the platform itself. With over 100K repositories, and growing
fast, HUGGING FACE HUB is therefore becoming a promising
source of data on all aspects of ML projects and the community
interactions around them. As such, we believe it is a promising
source for all types of empirical studies aimed at analyzing the
collaborative development and evolution of ML artifacts. Never-
theless, apart from the API provided by the platform, there are no
easy-to-use solutions to collect and explore the different facets of
HUGGING FACE HUB data, including the repositories, discussions
and code evolution. To overcome this situation, in this paper we
present HFCOMMUNITY, a relational database populated with
HUGGING FACE HUB data to facilitate empirical analysis on the
growing number of ML-related development projects.

Index Terms—Mining Software Repositories, Data Analysis,
Hugging Face

I. INTRODUCTION

Social coding platforms such as GITHUB, GITLAB, and
BITBUCKET have become the de facto standard for sharing
Open-Source Software (OSS) projects and collaborating on
them. These platforms are built on top of Git and rely on
the so-called pull-based development model [1], introduced by
GITHUB, where developers can create a copy (i.e., fork) of any
repository and submit a pull request to the original repository
to propose changes. They offer collaboration tools such as
issue trackers, discussions and wikis; as well as social features
such as the possibility to watch, follow and like other users
and projects. Among them, GITHUB has become the largest
code hosting site in the world, with more than 80 million users
and 200 million repositories.

The emergence of Machine Learning (ML) has triggered the
appearance of platforms specifically designed for sharing and
developing ML-based projects, being HUGGING FACE HUB
one of the most popular ones. HUGGING FACE HUB, initially
created as a hosting platform for ML artifacts where people
could link related projects and their respective datasets, is

moving towards becoming a more collaborative environment
with new features (such as discussions support) oriented
to increase community interactions. As of November 2022,
HUGGING FACE HUB hosts more than 100K repositories, and
this number is growing fast.

Its popularity, ML-specific focus and rich metadata make
HUGGING FACE HUB a promising source of data for em-
pirical studies on ML development. However, current access
to HUGGING FACE HUB repository data is only available
programmatically via the official API, which may hamper the
adoption and exploration of the different facets of HUGGING
FACE HUB data (e.g., the digestion of card data attributes or
associations between entities).

In this paper, we present HFCOMMUNITY, a tool that
enables researchers to discover HUGGING FACE HUB com-
munity insights by collecting and sharing HUGGING FACE
HUB data via a relational database. Like existing solutions
for general-purpose platforms (e.g., GHTORRENT [2] for
GITHUB), HFCOMMUNITY provides domain-specific con-
cepts such as models, datasets, and spaces, thus facilitating
its exploration and querying via SQL-like languages.

The rest of the paper is organized as follows. Section II
presents the HUGGING FACE domain. Sections III and IV
describe the architecture and website of HFCOMMUNITY,
respectively. Section V elaborates on the related work. Finally,
section VI ends the paper and summarizes the future work.

II. HUGGING FACE HUB

HUGGING FACE HUB is a Git-based social code hosting
platform focusing on ML development created by HUGGING
FACE, an Artificial Intelligence (AI) company.

Besides providing code-centered features (e.g., commit his-
tory via the underlying Git infrastructure), HUGGING FACE
HUB promotes collaboration within the repository’s commu-
nity via discussions. Discussions functionality is similar to that
of other platforms such as GitHub though with limitations. Un-
der this feature we can find the Q&A oriented threads and the
pull request infrastructure. HUGGING FACE HUB repositories
can be set to private, ensuring that repository is not visible by
other user of the platform, or gated, which require users to
agree to share their contact information in order to access.

HUGGING FACE HUB repositories are classified according
to three types: (1) models, (2) datasets and (3) spaces. The



first two types are related to the development of ML models
and datasets, while the third type is related to the development
of demo apps for them. The platform offers common features
for all types of repositories, such as the possibility of creating,
deleting, cloning or uploading files and a natural language de-
scription of the artifact (called card) but also specific features
depending on their type, as we describe in the following.

Model repositories are used to host pre-trained ML models.
HUGGING FACE HUB stores information about the dataset/s
and library the models rely on, a widget to run inferences
for such model, recommended configuration and spaces that
use that model for demo applications. Dataset repositories
target a variety of datasets useful for training models on
tasks such as translation, automatic speech recognition, and
image classification. Datasets can be linked to a research
article hosted in Papers with Code1 and citation information.
For models and datasets, HUGGING FACE HUB also tracks
the number of downloads. Finally, space repositories allow
developers to easily host ML demo apps on their profile.
Spaces aim at showcasing the capabilities of a model and to
provide a user-friendly interface to interact with it. Spaces
can be statically created via standard Web technologies (i.e.,
JavaScript and HTML) or rely on SDKs (HUGGING FACE
currently supports GRADIO2 and STREAMLIT3).

Another key feature of HUGGING FACE HUB repositories is
the repository card commented before, being different for each
type of repository. In model repositories, card information is
composed by its description, its intended uses and potential
limitations, the training parameters and experimental info,
which datasets were used to train the model and the evaluation
results. In dataset repositories, card information is intended
to inform users about how to responsibly use the data and
information about any potential biases within the dataset.
Furthermore, it is recommended to include dataset metadata,
which covers information about a dataset such as its license,
language, size and tags, which help users discover a dataset
on the Hub. Finally, in space repositories, the card information
gives information about the appearance of the repository.

III. ARCHITECTURE

The overall architecture of HFCOMMUNITY is depicted in
Figure 1. HFCOMMUNITY collects data from HUGGING FACE
HUB and the Git repositories, and stores it in a relational
database to facilitate the consumption of project data by data
analysts interested in running studies and metrics calculation
on the data.

Next we describe in more detail how we designed and
populated the database, and how we use it to compute useful
metrics.

A. Designing the database

The schema of the relational database is derived from
a conceptual schema, expressed as a UML class diagram,

1https://paperswithcode.com/
2https://gradio.app/
3https://streamlit.io/

HFCommunity

Conceptual Schema

Hugging Face
Hub API

Repositories

Data Analyst

Fig. 1: Overview of HFCOMMUNITY architecture.

modeling the relevant concepts, relationships and properties
relevant to the HUGGING FACE HUB and Git domains (see
Section II). This conceptual schema is shown in Figure 2.

The schema includes a hierarchy to represent repository
types (see Repository hierarchy). The common informa-
tion of any repository (see superclass of the Repository
hierarchy) is the identifiable data (see id, author, and sha)
and its characterization attributes (see likes, private,
lastModified, cardData, gated and type). Sub-
classes of the hierarchy model information specific of each
repository type (see Model, Dataset and Space classes).
For a model repository we model their type, the wid-
get feature (see pipeline_tag), the library used (see
library_name), and the model configuration information
(see config). In dataset repositories, there is information
about the description of the dataset (see description),
how to cite the dataset (see citation) and the identifier in
the PapersWithCode platform (see paperswithcode_id).
Furthermore, we have the number of downloads of model and
dataset repositories (see downloads).

Repositories may also include tags and discussion (see
tags and discussions relationships). Discussions have
an id and include: their title (see title), their sta-
tus (see status), when they have been created (see
createdAt), whether the discussion is a pull request (see
isPullRequest), and a set of discussion events (see
DiscussionEvent hierarchy) with additional information
for each type of event. These events define the actions in
a discussion thread, in particular: the modification of the
discussion title (see DiscussionTitleChange), which
includes the new title (see new_title) and the old ti-
tle (see old_title); the modification of the discussion
status (see DiscussionStatusChange), which includes
the new status (see new_status); a commit referring the
pull request (see DiscussionCommit), which includes
a summary (see summary) and the hash of the commit
(see commit relationship); and a comment in a discussion
(see DiscussionComment), which includes the content
(see content), whether the comment has been edited (see
edited) and whether the comment has been hidden (see
hidden).

As HUGGING FACE HUB repositories are based on Git, the
schema also models their commit history (see Commit class).
For a commit, we modeled its creation date and time (see
timestamp), its author (see author relationship), the list



Model

pipeline_tag: String

downloads: Int

library_name: String

config: String

Dataset

description: String

citation: String

paperswithcode_id: String

downloads: Int

Space

Tag

name: String

Discussion

id: Int

title: String

status: StatusEnum

createdAt: DateTime

isPullRequest: Bool

Author

username: String

avatarUrl: String

fullname: String

is_pro: Bool

type: AuthorType

source: String

Repository

id: String

name: String

type: RepositoryType

cardData: String

private: Bool

lastModified:DateTime

sha: String

likes: Int

gated: Bool

File

name: String
has_files

1..*
repo
1..1

Commit

sha: String

timestamp: DateTime

message: String
1..* 1..*

is_inchanges
commits
0..*

repo
1..*

tags
0..*

discussions
0..*

repo
1..1

isOwner

0..*
author

0..1

discussions
0..*

author
1..1

author
1..1

DiscussionEvent

id: String

type: EventType

createdAt: DateTime

events

0..*

from

1..1

author 1..1

authors

0..*

DiscussionComment

content: String

edited: Bool

hidden: Bool

DiscussionStatusChange

new_status: StatusEnum

DiscussionCommit

summary: String

DiscussionTitleChange

new_title: String

old_title: String

commit

0..1

ref 0..*

<<enumeration>>

model
dataset
space

RepositoryType

<<enumeration>>

open
close
merged
draft

StatusEnum

<<enumeration>>
AuthorType

bot
user

<<enumeration>>

comment
status_change
title_change
commit

EventType

Fig. 2: Conceptual schema of HFCOMMUNITY.

of modified files (see changes relationship), its message (see
message), and its hash (see sha).

Finally, the schema also includes information about authors
of commits, discussions and repository creators (see Author
class). An author is either a bot or a user (see type), and
has a name (see username), a full name (see fullname),
the URL of the profile picture in HUGGING FACE HUB (see
avatarURL), whether it has a pro account in the HUG-
GING FACE HUB (see is_pro) and the platform where it
belongs, for now being just Git and HUGGING FACE HUB
(see source).

Given this UML schema, we generate the structure of tables,
columns, keys and foreign keys of our database following
the usual mapping rules. In a nutshell, concepts/properties
in the conceptual schema are mapped into tables/columns
in the database schema, and associations are mapped into
foreign keys (e.g., repo association between Repository
and File) or new tables (e.g., changes association between
Commit and File) depending on the cardinality of the
association. To map the Repository hierarchy we used the
strategy of defining one table with the common attributes of
the superclass (repository) and one concrete table per each
subclass (model and dataset) with their pertinent attributes
plus a foreign key to the table for the superclass. On the other
hand, we mapped the whole DiscussionEvent hierarchy
in a single table (discussion_event) having all attributes.
The resulting relational schema is available to download [3].

B. Populating the Dataset

To populate the database we first rely on the Hub client
library4. This is a Python library to facilitate the interaction

4https://github.com/huggingface/huggingface hub

with the HUGGING FACE HUB API, such as deleting or
cloning a repository, uploading files, and creating and updating
a branch. We used this library to collect and fill the database
with the HUGGING FACE HUB information.

Note that there is not always a 1-1 mapping between the
API endpoints and our schema, and therefore we had to mix
and process the API data to properly populate the tables. In
a nutshell, we obtain the list of ML models using the API,
and then leverage on other API methods to complement the
associations and elements of the schema.

Moreover, we rely on a Git analyzer tool, called PY-
DRILLER5, to recover the data regarding the commit his-
tory not available through the HUGGING FACE HUB API.
To optimize the population process, we locally cloned the
repositories with the bare option, which recovers only the
Git administrative metadata and not the actual files. This
mechanism skips the downloading of large dataset files, often
the case in HUGGING FACE HUB projects, and allows us to
focus on the analysis of the key metadata of the repositories
(i.e., commit information).

We run this extraction process on a MariaDB database.
The populated database is provided as a SQL dump [3]. As
of November, 2022, the dataset is formed by 82,357 models,
14,826 datasets and 10,117 spaces.

C. Metric Calculation

From the data available in HFCOMMUNITY we can easily
query the information and calculate interesting metrics which
may help to understand the dynamics of the HUGGING FACE
HUB. As an example, in this section we show a couple of them.

5https://github.com/ishepard/pydriller



0 100

2.7%

8.9%
6.0%

model dataset space

Fig. 3: Example Metric. Percentage of repositories with dis-
cussions in HUGGING FACE HUB.

SELECT
COUNT(DISTINCT d.repo_id) AS num_repos, r.type

FROM discussion d
INNER JOIN repository r
ON d.repo_id=r.id
GROUP BY r.type

Listing 1: SQL query for metric shown in Figure 3.

For instance, as we already mentioned before, discussions
enable the collaboration among all community members, pro-
moting the communication and interaction between contribu-
tors. HFCOMMUNITY can be used to measure the usage of
discussions according to the repository type. Figure 3 shows
the results of this metric and shows that very few repositories
leverage this functionality. This metric can be computed thanks
to a simple SQL query, shown in Listing 1.

Another example of metric is the number of files in
HUGGING FACE HUB repositories. This metric allows us to
visualize the typical number of files found in a repository, and
also detect empty repositories. Figure 4 shows the results of
this metric, and the Listing 2 shows the SQL query. The inner
query returns the number of files per each repository, while the
outer query return the number of repositories having that exact
number of files. As can be seen, more than a half of HUGGING
FACE HUB repositories have less than 5 files. Interestingly
enough, 14.8% of all repositories in the HUGGING FACE HUB
have only 1 file, which may reveals toy or test projects.

IV. TOOL WEBSITE

We have created a website [4] for HFCOMMUNITY as
shown in Figure 5. The website is composed of four sections:

1) “Why Hugging Face?”, where we give some background
about HUGGING FACE;

2) “Information schema”, where we describe the concep-
tual schema;

3) “Download page”, where we provide the dump and
describe the database design;

4) “Metrics page”, where we illustrate the use of HFCOM-
MUNITY via example metrics as done in Section III-C.

V. RELATED WORK

To collect repository data, there is usually the choice to
use an API provided by the hosting platforms itself, such as

Repos per num of files

14.8%

28.0%

35.3%
14.6%

5.9%

6-10 files

2-5 files

1 file

11-15 files

16-50 files
>50 files

Fig. 4: Example Metric. Number of files in a repository of
HUGGING FACE HUB.

SELECT files_in_repo AS num_files,
COUNT(*) AS num_repos

FROM (SELECT repo_id, COUNT(*) AS files_in_repo
FROM file f
GROUP BY repo_id) s

GROUP BY files_in_repo

Listing 2: SQL query for metric shown in Figure 4.

GITHUB which has a REST API6 and a GraphQL API7 or
HUGGING FACE HUB8. There are also tools that are wrappers
built on top of such APIs. For instance, GHCRAWLER9 is a
GITHUB API crawler that walks a queue of GITHUB entities
transitively retrieving and storing their contents. There are also
API crawler tools which target the GITHUB GraphQL API,
such as PROMETHEUS by Jobst et al. [5].

To facilitate even more the exploitation of the data, several
works attempt to collect, digest and publish the data in more
accessible formats. Some examples are: GHTORRENT [2],
which is a dataset that provides a relational database with the
metadata of GITHUB repositories; and GITHUB ARCHIVE10,
which provides access to the metadata of all public events
triggered in GITHUB since December, 2011.

While the above stay at the GITHUB level, other works
complement them by collecting more fine-grained Git-related
activity. PYDRILLER [6] is a Python library that facilitates
the extraction of information from Git repositories. GITCOM-
PARE11 which extracts some health indicator metrics from
a Git repository. GIT2NET [7] is an Open-Source Python
package that facilitates the extraction of co-editing networks
from Git repositories

Finally, other works take a broader perspective aiming to
integrate all types of data sources related to the project. This
includes, for instance, discussions, pull requests, conversations
from SLACK or DISCORD, emails, etc.). This enables a more

6https://docs.github.com/en/rest
7https://docs.github.com/en/graphql
8https://huggingface.co/docs/huggingface hub/package reference/hf api
9https://github.com/Microsoft/ghcrawler
10https://www.gharchive.org/
11https://gitcompare.com/



Fig. 5: HFCOMMUNITY website.

comprehensive analysis of the development process and com-
munity of a project. Some examples are: GRIMOIRELAB [8],
SOURCECRED12, AUGUR13, KIBBLE14, or GITANA [9].

Nevertheless, none of the tools above cover HUGGING FACE
HUB. Therefore, to the best of our knowledge, ours is the first
tool and dataset aimed at facilitating the analysis of HUGGING
FACE HUB data complementing these previous approaches.

VI. CONCLUSION

In this paper we have presented HFCOMMUNITY, a tool to
gather information about the HUGGING FACE HUB reposito-
ries and community discussions. HFCOMMUNITY publishes
this information as a relational database storing HUGGING
FACE data on repositories, tags, discussions, discussion events,
files, commits, authors, etc. The dataset is available for down-
load in the tool website [4].

We believe that the release of HFCOMMUNITY opens the
door to new empirical studies focused on ML and AI projects,
to complement existing literature on the field (e.g., [10]). As
any other source of large-scale data, we find crucial to study
the perils and promises of mining repositories from HUGGING
FACE HUB, similar to what has been done for other software
data sources, see for instance the works by Kalliamvakou et
al. [11] and Dabic et al. [12].

The development of HFCOMMUNITY is an ongoing work
that continuously adapt to the HUGGING FACE HUB API
changes. However, this API still has a number of limitations
we had to overcome. First, the API does not provide Git-
related data, such as commits, authors, etc, thus limiting the
analysis of development practices. We solved this situation by
retrieving such information directly from the Git repositories
as explained in Section III. However, this introduces a threat
to validity, as Git and HUGGING FACE HUB usernames are
not forced to match. Furthermore, the API does not provide

12https://sourcecred.io/
13https://github.com/chaoss/augur
14https://kibble.apache.org/

information about the creation date of a repository nor you
can filter by date when retrieving the projects. At the database
level, we take the date of the first commit as creation date
but given the growing number of HUGGING FACE HUB
repositories, filtering should be added to the API for scalability
reasons. Finally, some valuable repository information is not
explicitly available in the API and must be searched within
the plain textual description. A clear example is the link to
the same repository hosted in GITHUB (when exists) which
would enable a cross-analysis of the repository data. Another
example would be the relationships between spaces, models
and datasets that it is also hidden in the card data.

As future work, we plan to perform a NLP-based analysis of
the textual repository fields to extract relevant information as
the one mentioned above or even more fine-grained annotation
data for explainability analysis [13]. Once links between repos-
itories become available (either internal, i.e., among HUGGING
FACE HUB artifacts, or external, i.e., for repos hosted in other
platforms) we plan to work on an integration approach that
enriches the available project data. Finally, we would like to
automate the process to incrementally collect repositories from
HUGGING FACE HUB, thus allowing the dataset to be released
more periodically.

REFERENCES

[1] G. Gousios, M. Pinzger, and A. van Deursen, “An Exploratory Study of
the Pull-based Software Development Model,” in Int. Conf. on Software
Engineering, 2014, pp. 345–355.

[2] G. Gousios, “The Ghtorrent Dataset and Tool Suite,” in Working Conf.
on Mining Software Repositories, 2013, pp. 233–236.

[3] A. Ait, J. Cánovas Izquierdo, and J. Cabot, “HFCommunity Dataset,”
http://hdl.handle.net/20.500.12004/1/C/SANER/2023/699, 2022.

[4] A. Ait, J. Cánovas Izquierdo, and J. Cabot, “HFCommunity Website,”
http://hdl.handle.net/20.500.12004/1/C/SANER/2023/218, 2022.

[5] A. Jobst, D. Atzberger, T. Cech, W. Scheibel, M. Trapp, and J. Döllner,
“Efficient GitHub Crawling Using the GraphQL API,” in Computational
Science and Its Applications, 2022, pp. 662–677.

[6] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python Framework
for Mining Software Repositories,” in Europ. Software Engineering
Conf. and Symp. on the Foundations of Software Engineering, 2018,
pp. 908–911.

[7] C. Gote, I. Scholtes, and F. Schweitzer, “git2net: Mining time-stamped
co-editing networks from large git repositories,” in Int. Conf. on Mining
Software Repositories. IEEE Press, 2019, pp. 433–444.

[8] S. Dueñas, V. Cosentino, J. M. González-Barahona, A. del Castillo
San Felix, D. Izquierdo-Cortazar, L. Cañas-Dı́az, and A. P. Garcı́a-Plaza,
“Grimoirelab: a Toolset for Software Development Analytics,” PeerJ
Comput. Sci., vol. 7, p. e601, 2021.

[9] V. Cosentino, J. Cánovas Izquierdo, and J. Cabot, “Gitana: a Software
Project Inspector,” Sci. Comput. Program., vol. 153, pp. 30–33, 2018.

[10] D. Gonzalez, T. Zimmermann, and N. Nagappan, “The State of the
Ml-universe: 10 Years of Artificial Intelligence & Machine Learning
Software Development on GitHub,” in Int. Conf. on Mining Software
Repositories, 2020, pp. 431–442.

[11] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán,
and D. E. Damian, “The Promises and Perils of Mining GitHub,” in
Working Conf. on Mining Software Repositories, 2014, pp. 92–101.

[12] O. Dabic, E. Aghajani, and G. Bavota, “Sampling Projects in GitHub
for Msr Studies,” in Int. Conf. on Mining Software Repositories, 2021,
pp. 560–564.

[13] J. Giner-Miguelez, A. Gómez, and J. Cabot, “DescribeML: a tool for
describing machine learning datasets,” in Int. Conf. on Model Driven
Engineering Languages and Systems: Companion Proceedings, 2022,
pp. 22–26.


