
An Empirical Study on the Survival Rate of GitHub Projects
Adem Ait
IN3 - UOC

Barcelona, Spain
aait_mimoune@uoc.edu

Javier Luis Cánovas Izquierdo
IN3 - UOC

Barcelona, Spain
jcanovasi@uoc.edu

Jordi Cabot
IN3 - UOC, ICREA
Barcelona, Spain

jordi.cabot@icrea.cat

ABSTRACT
The number of Open Source projects hosted in social coding plat-
forms such as GitHub is constantly growing. However, many of
these projects are not regularly maintained and some are even aban-
doned shortly after they were created. In this paper we analyze
early project development dynamics in software projects hosted on
GitHub, including their survival rate. To this aim, we collected all
1,127 GitHub repositories from four different ecosystems (i.e., NPM
packages, R packages, WordPress plugins and Laravel packages)
created in 2016. We stored their activity in a time series database
and analyzed their activity evolution along their lifespan, from 2016
to now. Our results reveal that the prototypical development pro-
cess consists of intensive coding-driven active periods followed by
long periods of inactivity. More importantly, we have found that a
significant number of projects die in the first year of existence with
the survival rate decreasing year after year. In fact, the probability
of surviving longer than five years is less than 50% though some
types of projects have better chances of survival.

CCS CONCEPTS
• Software and its engineering→ Open source model; • Infor-
mation systems→ Information retrieval.

KEYWORDS
Open Source Analysis, Survival Analysis, Mining Software Reposi-
tories, Empirical Study

ACM Reference Format:
Adem Ait, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2022. An Em-
pirical Study on the Survival Rate of GitHub Projects. In 19th Interna-
tional Conference on Mining Software Repositories (MSR ’22), May 23–24,
2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3524842.3527941

1 INTRODUCTION
Open Source Software (OSS) is a key player in the modern soft-
ware industry, underlying the software infrastructure of a massive
number of private and public-sector enterprises. OSS proposes a
collaborative development model where the code is accessible and
anyone can contribute. However, this very own collaborative nature

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3527941

becomes one of its main sources of problems, as developers aban-
doning the project causes serious sustainability problems [7, 18].

As such, when entering to any OSS ecosystem, either to search
for a library to integrate into our software product or to collaborate
in a project, the long-term sustainability or, at the very least, the
level of activity of a project and its temporal evolution, should be a
factor to consider when choosing the best OSS match for our goals.

Unfortunately, the task of exploring and selecting OSS projects
is not an easy task. The number of OSS projects to explore is very
large (e.g., GitHub stores more than 200 million repositories) and
the selection process requires analysis data and processing mecha-
nisms that are not trivial to use. Indeed, current filtering and query
criteria supported by platforms such as GitHub are not sufficient
to effectively locate good project candidates. Even less when it
comes to choose projects that are alive and kicking. They mostly
provide querying capabilities for basic repository information, such
as name, technology, topics or number of stars; but they lack of
more advanced features to spot active projects, which requires
specific support for time-based metrics.

We propose to study the identification of active OSS projects
via survival analysis, which is a set of methods and techniques for
analyzing the time until an event occurs. This type of analysis pays
special attention to the time-dependent nature of the OSS project
information and allows us to understand the probability of survival
of OSS projects.

More specifically, we perform a quantitative analysis of the sur-
vivability of OSS projects over time, focusing on their survival rate,
evolution dynamics and the identification of factors that positive
correlate with higher surviving rates. We focus our analysis on
four ecosystems in GitHub, specifically: NPM packages, R packages,
WordPress plugins and Laravel packages. By focusing in specific
ecosystems we ensure similar development practices and structure
but also a high variety on their purpose. We study the evolution
of the project survival status over time (i.e., alive, zombie or dead)
and perform a survival analysis of the projects in each ecosystem.

Our results revealed that the typical development process con-
sists of intensive active periods, where the main activity is focused
on coding tasks; followed by long periods of inactivity. With regard
to the survival analysis, we have found that more than a half of the
projects dies in their first four years. GitHub projects developed by
organizations seem to have a higher survival rate, and the same
happens when the community of the project is large.

We believe the results of our analysis are also useful to raise
awareness on the volatility of Open Source projects, and the risks
incurred by many organizations that heavily rely on Open Source
projects without paying enough attention to their health nor con-
tributing to their sustainability.

Our results complement previous works more focused on the
characterization of individual contribution activity by taking amore

https://doi.org/10.1145/3524842.3527941
https://doi.org/10.1145/3524842.3527941
https://doi.org/10.1145/3524842.3527941

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Ait, et al.

global project perspective. And provide useful data that could be
used by other projects looking to develop machine learning models
to forecast the future evolution of a project.

The paper is structured as follows. Section 2 presents the back-
ground of the study. Sections 3 and 4 describes the methodology ap-
plied and presents the results, respectively. Section 5 highlights ad-
ditional insights and discusses some future work. Section 6 presents
the replicability package of our study, while Section 7 describes
the threats to validity. Section 8 presents the related work, and
Section 9 concludes the paper.

2 BACKGROUND
2.1 GitHub
The development of OSS projects is a collaborative effort where any
contributor can jump in and help on the evolution of the project.
Well-known solutions such as GitHub provide an online platform
to enable this collaboration. GitHub is a social code hosting plat-
form which, besides offering repository hosting services, provides
features such as issue-tracking or pull request support to help to
evolve OSS projects and manage the community behind the project.

A GitHub project is built upon the concept of a code repository.
Along this paper, we use the terms repository and project indistinctly.
The main elements of any GitHub project are: (1) commits, which
becomes the change unit in any code repository and represent a
set of changes in the code; (2) issues, which are used to report bugs,
questions, or announcements of any kind; (3) pull requests, which
are requests to perform changes in the project’s codebase; (4) code
reviews, which incorporate changes and suggestions to the code of
pull requests; and (5) comments, which can be attached to issues,
pull requests and code reviews, and are the main communication
mechanism to debate any point in question of the project.

A GitHub project can also include a wiki and a forum (called
discussion boards in GitHub), which we do not consider in our study
due to their low usage and novelty [11] in the platform, respectively.

In GitHub we can find three types of users: (1) individuals, which
represent users using the platform; (2) organizations, which rep-
resent a company, project or development initiative; and (3) bots,
which provide services for repositories (e.g., automatically create is-
sues or launch external tools each time an event occurs). Projects in
GitHub can be owned by an individual (i.e., a user of the platform)
or by an organization (i.e., an account representing a company,
project or development initiative).

2.2 Time Series and Survival Analysis
Time series analysis refers to the set of methods and techniques
to study sequences of data collected over an interval of time for a
set of events. To perform this analysis, the recording of the data is
done at consistent intervals of times rather than intermittently or
randomly. In time series analysis, the main objective is to explore
how event data changes over time, in particular, to find patterns in
the data which depends on time.

Time series databases are a specific type of databases tailored
to the analysis of time series data. This kind of databases offers
support for (1) storing and retrieving time series data; (2) scaling, as
time series data are extensive; and (3) providing visualization tools
or easy integration components with third-party visualization tools,

Project 1

Project 2

Project 3

Project 4

3 6 9 12 15 18 21 24 27 30

X

X

time (months)

X

Project 5

study end

Figure 1: Examples of survival analysis data. Timelines rep-
resent project’s activity while the symbol X represents the
abandonment of the project.

which are common tasks in time series analysis. TimeScaleDB1
and InfluxDB2 are two of the most common databases used in
time series analysis.

Survival analysis is a statistical modeling technique to study the
expected time for an event to occur [16]. Due to the data used in sur-
vival analysis, it could be considered as a special case of time series
analysis. By applying survival analysis, we study the proportion of
population which will survive to a particular event in a given period
of time. Furthermore, survival analysis also considers censoring,
which occurs when we have information about individual survival
time, but we do not know the survival time exactly.

In the context of this paper, we consider that a project survives3
when its development has not been abandoned at the time we col-
lected the project’s data activity (i.e., end of our study). Thus, the
death event comes after a project activity stops. Note that censor-
ing may occur whether a project is alive at the time we collected
the data, but it is later abandoned. This situation is called right-
censoring and usually happens in any kind of survival data as the
event can generally occur after conducting an empirical study. Fig-
ure 1 shows different examples of projects that may be found in our
study. As can be seen, projects 1 and 4 are considered abandoned
ones (i.e., dead) while projects 2, 3 and 5 are considered alive ones;
at the time our study ends. Note that project 3 is a right-censoring
case, as it is considered alive, but it is later abandoned.

3 RESEARCH METHOD
In this section we describe how our study has been set up. We first
present our research questions (Section 3.1), then we report on the
dataset construction process (Section 3.2), and finally we present
the main descriptive statistics of our dataset (Section 3.3).

3.1 Research Questions
In this paper we are interested in better understanding the surviv-
ability of OSS projects. To this aim, we study the activity of a set of
GitHub repositories created in 2016 and observe their evolution un-
til October 2021. More specifically, we have identified the following
research questions:
RQ1 How does the project activity change over time? This research

question analyzes the different status (or phases) a project

1https://www.timescale.com/
2https://www.influxdata.com/
3Along the paper we use the terms dead and alive as they are typically used in survival
analysis, but it is important to note that an OSS project can come back to life after
declared dead.

https://www.timescale.com/
https://www.influxdata.com/

An Empirical Study on the Survival Rate of GitHub Projects MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

may transition during their lifespan (e.g., periods of time
with high activity and others when the project may look
dead). By studying the evolution of the project activity, we
can better understand the dynamism and common evolution
patterns of projects’ lives.

RQ2 What is the survival rate? In this research question we focus
on identifying projects that have died and when they have
died (i.e., been abandoned and with no human activity). We
then calculate the survival rate (i.e., dead vs. alive projects)
which will allow us to understand the survivability of the
projects across a number of dimensions.

To answer each research question we propose to collect a set of
OSS projects within specific ecosystems and then follow a general-
to-specific approach. We first analyze projects in each ecosystem
to provide a general view, and then we conduct a deeper analysis
grouping the full collection of projects to uncover pieces of evidence
in projects of specific groups. Based on our knowledge and partici-
pation in different forums related to Open Source, we propose two
factors to analyze the projects as groups, namely: project type and
community size. On the one hand, there are two project types: those
owned by an individual and those owned by an organization. The
former lives in a user’s GitHub profile, while the latter is developed
within an organization account as commented in Section 2.1. Our
hypothesis is that there will be differences between individual and
organization projects, as the purposes and driving forces living in
each account type are different.

On the other hand, we define three tiers for the project com-
munity size. We rely on the descriptive statistics of the project’
community sizes to set the limits of these tiers. Thus, Tier 1 con-
tains those projects with a number of contributors lower than the
minimum value of the interquartile, Tier 2 contains those projects
with a number of contributors which falls into the interquartile, and
Tier 3 contains those projects with a number of contributors higher
than the maximum value of the interquartile. The term contributor
refers to any individual who participates in the project via commits,
issues, pull requests, code reviews or comments. Our hypothesis is
that projects in Tier 1 will behave different from those in Tiers 2
and 3; as the main responsibility to keep the project alive goes to a
few contributors (sometimes even one or two contributors).

3.2 Dataset Construction
In this section we report on the construction of the dataset for our
empirical study. The creation of the dataset followed three phases,
namely: ecosystem selection, project analysis and database import.
Next we describe each of these phases.

Ecosystem selection. To build our dataset we decided to select a set
of GitHub projects within specific ecosystems. Focusing on specific
ecosystems ensures similar development practices and structure
but also high variety on their purpose. Our dataset contains GitHub
projects of four ecosystems, namely: NPM packages, R packages,
WordPress plugins and Laravel packages. To select the projects we
applied the following criteria: (1) they have been created in 2016,

Table 1: Number of repositories in GitHub per ecosystem and
creation date.

Topic In 2016 All-time
npm-package . 280 4,691
r-package . 199 1,993
wordpress-plugin . 540 7,223
laravel-package . 108 1,424

Total 1,127 15,331

(2) they have been updated at least once in 20164, and (3) they are
part of the ecosystem of interest.

The gathering of the projects was done by querying the GitHub
Search API. Criteria (1) and (2) are directly supported by specific
time filters of the API, while the criteria (3) uses the filter which
relies on repository topics offered by the same GitHub API. Thus,
we used the npm-package topic for NPM packages, r-package
topic for R packages, wordpress-plugin topic for WordPress plu-
gins and laravel-package topic Laravel packages. As the GitHub
Search API returns a maximum of 100 entries per query, we itera-
tively queried the API (i.e., using pagination) to collect all projects
in the considered period of time5.

Table 1 shows the number of projects created in 2016 per ecosys-
tem (second column) and the size of these ecosystems in GitHub
(last column). In total, we selected 1,127 projects. It is also important
to note that none of the projects selected in our dataset is a fork of
another project.

Project analysis. In this phase we cloned and analyzed the selected
projects. The analysis was performed by SourceCred6, a mea-
surement tool for collaborative solutions such as GitHub projects,
among others. SourceCred builds a collaboration graph from
GitHub projects, where nodes represent assets of the repository
(e.g., users, commits, comments, issues, pull requests, etc.) and edges
represent relationships among them (e.g., a user authors a commit,
a comment belongs to an issue, etc.). The graph also includes tem-
poral information (e.g., timestamp of the creation of a commit or
an issue), which we used to perform our study.

An important issue to consider when retrieving information
from git repositories is the special support required for user dis-
ambiguation (i.e., different commit metadata information can refer
to the same committer). As SourceCred relies on the GitHub API,
which uniquely identify users by their username, it ensures a proper
disambiguation. Furthermore, the use of the GitHub API also allows
identifying bots, as the API flags this kind of users.

Database import. From the collaboration graphs extracted in the
previous phase, we populated a Time Series Database (TSDB). We
used a relational TSDB solution named TimescaleDB, which pro-
vides specific support to deal with time series data. For instance,
we leveraged some functions provided by TimescaleDB, such as
time_bucket, to manage our time series data efficiently.
4This removes projects that were mere mirrors of projects hosted elsewhere and that
were only uploaded to GitHub for reference purposes, not really with the goal of
starting/continuing their development there.
5An example of GitHub Search API query to get the first page of r-package
projects is https://api.github.com/search/repositories?q=topic:r-package
created:2016-01-01..2016-12-31 pushed:>=2016-01-01&per_page=100&page=1
6https://sourcecred.io/

https://sourcecred.io/

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Ait, et al.

COMMENT

COMMIT

ISSUE

PULL

REVIEW

USER

0 50 100 150

Ecosystem WordPress Laravel NPM R

Assets

Figure 2: Assets per repository.

Table 2: Total number of assets.

Topic Commits PRs Issues Comments Revs. Users
npm-package 41,767 8,858 3,947 22,961 4,549 4,319
r-package 48,965 2,202 7,032 23,366 1,260 2,689
wordpress-plugin 134,426 16,152 27,348 103,999 16,878 17,163
laravel-package 11,070 1,841 1,561 5,310 228 2,005

The database schema includes a table for each repository asset
considered in the study, namely: commits, issues, pull requests,
comments, and code reviews. All table entries include a timestamp
of the creation of the asset, thus representing events for each asset
type. For the sake of efficiency in our queries, information regarding
the author, the author type (i.e., whether the author is a bot or not)
and repository of each asset was denormalized and included as
columns in all tables. Thus tables include this shared columns plus
an additional one with the unique identifier of the asset (e.g., the
hash of a commit). In total, the database schema defines five tables
(i.e., commits, issues, pull requests, comments, and code reviews)
with five columns each (timestamp, repository, author, author type
and unique identifier).

Once the database has been initialized, we performed the fol-
lowing steps to import the data from the collaboration graphs: (1)
read the data from the collaboration graphs, (2) locate and extract
the required node attributes, classified by its type (e.g., commits,
issues, comments, etc.), and (3) insert the data into the correspond-
ing table. For instance, given a graph node representing a commit,
we retrieve the information about the hash, timestamp, repository
name, author username, and whether the user it is a bot; and then
insert the data into the commits table.

3.3 Dataset Descriptive Statistics
The dataset was built distinguishing each ecosystem. Figure 2 shows
the distribution of the assets per ecosystem, while Table 2 shows
the total number of assets per ecosystem. In total, our dataset con-
tains 236,228 commits, 29,053 pull requests, 39,888 issues, 155,636
comments, 22,915 reviews and 26,056 unique users.

As commented in Section 3.1, in our study we used two factors
to classify repositories, namely: community size and project type.
Community size factor defines three tiers (or levels) which depend
on the distribution of the community size of the projects in the

Table 3: Range considered in each tier per ecosystem for the
community size factor.

Topic Tier1 Tier2 Tier3
npm-package . [1, 1] (1, 6] (6, 13]
r-package . [1, 3] (3, 19] (19, 43]
wordpress-plugin . [1, 1] (1, 6] (6, 13]
laravel-package . [1, 2] (2, 18.5] (18.5, 43]

Table 4: Number of repositories per factor.

Factors Tier1 Tier2 Tier3 Total
User 324 214 141 679
Organization 96 185 167 448

Total 420 399 308 1,127

Laravel

NPM

R

WordPress

0 365 730 1095 1460 1825 2190
number of days from 2016−01−01

Activity min max

Distribution of start and end of repositories activity

Figure 3: Distribution of starting and ending timestamps for
the projects in each ecosystem.

ecosystem. Table 3 shows the range considered in each tier per
ecosystem.

On the other hand, Table 4 shows the number of projects per fac-
tor (see last column and row for totals) and the number of projects
crossing both factors. We can appreciate a slight difference between
user and organization projects. While user projects are usually
smaller, with regard to the community size; organization projects
tend to be larger.

Finally, Figure 3 shows the distribution of the starting and ending
timestamps of the project lifespan. The time is reported by the
number of days since the initial date considered in our study (i.e.,
January 1𝑠𝑡 , 2016). For the sake of clarity, days are reported grouped
by years. Starting and ending timestamps indicate the first and last
events detected in the project. Note that even though our selection
criteria collected projects created in 2016, there are some projects
which show activity after the first year of life (i.e., projects created
in 2016 but with a commit, issue, pull request, comment or code
review created later). On the other hand, the distribution of ending
timestamps is spread along almost the full time-lapse considered in
our study.

4 RESULTS
We report in the following how we address each research question
considered in our study.

4.1 RQ1
In this first research question, we study the evolution of the repos-
itory through different activity status along the time period con-
sidered in our study. We define a repository is either alive or dead,
depending on whether there is any activity in the repository or not

An Empirical Study on the Survival Rate of GitHub Projects MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

at all, respectively. Furthermore, for alive projects, we differentiate
between running ones, which are those projects that show at least
some coding activity (i.e., commits) even if they have also other
types of activity; and zombie ones, which include projects for which
the only activity is non-coding (e.g., opening an issue or adding a
comment) and bot activity but not actual coding contributions by
human developers. To perform our analysis, we infer the repository
status at a certain month by applying the previous criteria on the
set of activity events occurring in that month of the project’s life.
We consider that all repositories start in the running status.

For a repository, we define its evolution path as a list of sta-
tus, one per month, starting from the first month of life (e.g., Ru
nning-Running-Zombie-Dead-...). For the sake of clarity, when
reporting this list we group repeated consecutive status and count
the number of months (e.g., previous example would become Runni
ng(2m)-Zombie(1m)-Dead(1m), where Xm means X months).

We then analyze the evolution paths for all repositories in our
dataset, grouped by ecosystem, and represent them as a state ma-
chine, where each state corresponds to a status, and transitions
indicate a change in the repository status. States are labelled with
the name of the status (i.e., running, zombie or dead) and the average
time (in months) the project activity stays in that state. Transition
labels indicate the probability to change status each month, calcu-
lated as the number of times such outbound transition is detected in
the evolution paths divided by the total number of outbound transi-
tions with the same source state, and expressed as percentage. Note
that we calculate the probability regardless the position of the tran-
sition in the path (e.g., Running-Zombie-Dead-Running-Zombie
includes two transitions Running-Zombie). Furthermore, the sum
of all outbound transitions must be equal to 100%. Given this state
machine definition, self-transitions represent a repository status
that repeats on consecutive months.

Figure 4 shows the state machines for the four ecosystems. As
can be seen, the behavior for all ecosystems are alike. Projects tend
to not move from one state to another, but if they do so, it is likely
that they move from running state to dead one, thus meaning that
projects show intermittent activity. An example illustrating this in-
termittent behavior is the project asheabbott/wordpress-custom
-post-types-taxonomies, which is part of the WordPress ecosys-
tem and its evolution path is Running(1m)-Dead(14m)-Running(1
m)-Dead(19m)-Running(1m)-Dead(31m). Another example is the
project gswalden/pkg-env, which is part of the NPM ecosystem
and its evolution path is Running(1m)-Dead(2m)-Running(1m)-De
ad(17m)-Running(1m)-Dead(50m). For the sake of space, we chose
two examples of projects which died prematurely (see the long pe-
riod of time of the last dead state) and therefore have short evolution
paths; however, most of the projects presents this pattern, where
short running states alternate with longer dead states.

The fact that the percentage to move from dead to zombie states
is lower than to move from dead to running states reveals the im-
pact of coding contributions (and not on the non-coding actions
alone, for instance, via issues or comments) in the project develop-
ment process. The project eddelbuettel/rcppmsgpack from the R
ecosystem is a good example to illustrate this. The project goes from
running to dead states with similar duration (i.e., it has a period of X
months running, and then it has a period of X months dead). An ex-
cerpt of its evolution path is ...-Running(3m)-Dead(3m)-Runnin

g(3m)-Dead(4m)-Alive(4m)-Dead(4m)-Running(6m)-Dead(5m)
-Running(6m)-..., with exceptional transitions to zombie state
(i.e., only once in ...-Zombie(6m)-Dead(6m)-Running(6m)-...),
which may reveal a code-focused repository but also a maintenance
process.

Furthermore, once projects move to the zombie state, the proba-
bility to move to the dead state is higher in the NPM, WordPress
and Laravel ecosystems. Given this behavior, the zombie state could
be considered the prelude to the dead state. In fact, further analysis
revealed that 15.96% of the transitions from zombie to dead are final
ones (i.e., there are no more transitions and therefore the project is
dead), and it is detected in 21.30% of the projects of our dataset. It
is interesting to note that the average time a project stays in the
dead state is higher than the average time in the other states. We
also computed the average number of transitions between different
states per ecosystem, which can give a hint on the diversity on
the projects’ evolution paths. The average number of transitions in
each ecosystem is: (1) R, 18.18; (2) NPM, 11.74; (3) Laravel, 15.99;
and (4) WordPress, 11.16.

In addition to this evolution path study, we performed the same
analysis on all data using factors regarding the community size (i.e.,
using Tiers 1, 2 and 3), and the project type (i.e., User or Organi-
zation). Figures 5 and 6 show the state machines for project type
and community size factors, respectively. Regarding the results
for project type factor, we can only see a slight variation in both
average state time and state transitions. However, average state
time in running seems to be higher in Organization projects, while
dead average time is lower. Hence, it appears to be greater activity
in Organization projects.

On the other hand, when considering the community size factor,
we detect a notable difference in the average time in each state. The
average time in running and zombie states increases along with
the tier, while dead state decreases. Tier 3 is the only tier with the
highest average time in running than in anyone, thus indicating that
there are longer periods of activity. Concerning state transitions,
there are no notable differences.

Answer to RQ1: The analysis of projects’ activity evolution
during their lifetime reveals an intermittent activity, which
moves from running (i.e., any activity) to dead (i.e., no activity
at all) states. Besides, the average time in dead state is approx-
imately two times the average time in the running state, thus
revealing longer periods of inactivity. On the other hand, we
detected that when a project moves to the zombie state (i.e.,
non-development activity) it is likely to move to the dead state.
These results suggest that the typical development process
in the four ecosystems evolves in short intensive periods of
time with long periods of inactivity. When having into ac-
count the project type and community size factors, we found
that projects owned by organizations ensure higher levels of
activity, and the same happens for those projects with bigger
community sizes.

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Ait, et al.

Alive

Running
(3.25m)

77.6%

Zombie
(2.75m)

5.72%
Dead
(8.35m)

16.69%

17.74%

60.66%

21.6%

14.56%

4.72%

80.72%

(a) NPM

Alive

Running
(4m)

79.65%

Zombie
(2.67m)

4.78%
Dead
(7.3m)

15.57%

19.7%

61.66%

18.64%

16.79%

4.82%

78.38%

(b) R

Alive

Running
(4.07m)

81.57%

Zombie
(2.6m)

3.04%
Dead
(8.19m)

15.39%

16.51%

59.96%

23.53%

15.55%

4.22%

80.22%

(c) WordPress

Alive

Running
(2.83m)

73.74%

Zombie
(2.54m)

6.14%
Dead
(6.59m)

20.13%

21.48%

53.29%

25.23%

16.96%

5.75%

77.29%

(d) Laravel

Figure 4: State machines representing the evolution paths in each ecosystem. State labels indicate the name of the status and
the average time (in months). Transition labels indicate the probability to change status each month.

Alive

Running
(2.93m)

77.25%

Zombie
(2.52m)

4.65%
Dead
(8.55m)

18.1%

18.15%

57.83%

24.02%

14.6%

4.55%

80.84%

(a) User

Alive

Running
(4.95m)

81.56%

Zombie
(2.81m)

4%
Dead
(7m)

14.43%

18.31%

61.95%

19.74%

17.28%

4.73%

77.99%

(b) Organization

Figure 5: State machines representing the evolution paths
grouped by project type. State labels indicate the name of the
status and the average time (in months). Transition labels
indicate the probability to change status each month.

4.2 RQ2
In this research question we analyze the survival rate of the projects
considered in our dataset. While the previous research question
focused on the monthly evolution of projects’ activity status, this
research question considers how many of them were dead (i.e., with
no human activity) at the end of the period of time considered in
our study. We consider a project survives, i.e., it is alive, if it has
shown activity of any kind in the last six months of the period of
time considered in our study; otherwise, we consider the project did
not survive and therefore is dead). For dead projects, the moment
of death is the timestamp of the last activity in the project.

Table 5 shows the amount of dead and alive projects of our
dataset, separated by ecosystem. As can be seen, approximately
more than 50% of the repositories die within the period of time
considered in our study for all four ecosystems. Table 6 shows an
expanded analysis on dead projects, showing the number of dead
projects we found per year. Note that the year column refers to
the age of the project when it died. We can see that, except for the
r-package ecosystem, the most number of deaths are recorded in
the first year; and by the fourth year, 50% of the projects are dead.

Alive

Running
(2.37m)

80.11%

Zombie
(1.97m)

0.39%
Dead

(10.14m)

19.51%

15.28%

50%

34.72%

15.78%

1.08%

83.13%

(a) Tier 1

Alive

Running
(2.37m)

79.05%

Zombie
(1.97m)

1.95%
Dead
(8.88m)

19%

10.67%

63.02%

26.31%

14.19%

3.69%

82.13%

(b) Tier 2

Alive

Running
(6.01m)

79.75%

Zombie
(4.29m)

7.41%
Dead
(2.85m)

12.83%

21.56%

58.98%

19.46%

17.92%

8.9%

73.18%

(c) Tier 3

Figure 6: State machines representing the evolution paths
grouped by community size. State labels indicate the name
of the status and the average time (in months). Transition
labels indicate the probability to change status each month.

With these data, we calculated the probability of survival over
time per ecosystem. In particular, we computed the survivor func-
tion 𝑆𝑒 (𝑡) for each ecosystem 𝑒 , which gives the probability that a
project survives longer than some specified time 𝑡 . Figure 7a shows
the survival curve, which is the result of the survivor function,
with its confidence interval per ecosystem (see shadowed areas per
ecosystem). As can be seen, except for the r-package ecosystem,
the probability of survival when 𝑡 > 36𝑚𝑜𝑛𝑡ℎ𝑠 approaches 50%,

An Empirical Study on the Survival Rate of GitHub Projects MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Topic # Projects Dead Alive
npm-package 280 189 (67.50%) 91 (32.50%)
r-package . 199 98 (49.25%) 101 (50.75%)
wordpress-plugin 540 360 (66.57%) 180 (33.43%)
laravel-package 108 58 (53.70%) 50 (46.30%)

Table 5: Distribution of dead and alive projects.

Year
Topic 1 2 3 4 5 6

npm-package 56 50 36 28 18 1
(20%) (17.86%) (12.86%) (10.00%) (6.43%) (0.36%)

r-package 8 13 13 27 34 3
(4.02%) (6.53%) (6.53%) (13.57%) (17.09%) (1.51%)

wordpress-plugin 144 69 60 48 33 6
(26.67%) (12.78%) (11.11%) (8.89%) (6.11%) (1.11%)

laravel-package 21 11 9 13 4 0
(19.44%) (10.19%) (8.33%) (12.04%) (3.70%) (0%)

Table 6: Analysis of dead projects. Second column indicates
the age of the project when it died.

and it drops lower than 50% when 𝑡 > 48𝑚𝑜𝑛𝑡ℎ𝑠 . The r-package
ecosystem shows greater probability of survival over time, although
it suddenly drops when 𝑡 > 60𝑚𝑜𝑛𝑡ℎ𝑠 .

Additionally, we calculated the probability of survival over time
per (a) project type and (b) community size, Figures 7b and 7c show
the corresponding functions, respectively. The results reveal that
organization projects have a higher probability of survival than
personal projects, and that the bigger the community involved in
the development the higher the chance of surviving. Tier 1 projects
tend to die prematurely, while Tier 3 projects have a higher chance
of having a longer lifespan. Usually, Tier 1 projects have a few
months of activity before dying. An illustrative example of this
case is the repository lehoangduc/laravel-packages of the Lar-
avel ecosystem, which lives during approximately two months and
then dies, having a lifespan of one month and six days. In fact, all
repositories that die within the first year in the Laravel ecosystem
are from Tier 1. On the other hand, 59.25% of all projects with a
lifespan of more than five years are from Tier 3, and just 7.40% of
those are from Tier 1. An example of a Tier 3 repository with a
lifespan of 67 months is musonza/chat, which has activity in the
last three months of the study. Figure 7d shows that these results
hold for all six community/owner combinations.

Answer to RQ2:More than a half of the analyzed projects die
in their first four years. In fact, the probability of survival is
lower than 50% beyond the fifth year of live. When considering
project type and community size, organization projects have
a higher probability of survival, and the same happens for
projects with bigger community sizes.

5 DISCUSSION
Beyond the main findings reported so far, we would like to highlight
some additional insights and discussion points derived from this
work.

+

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + +

+

+
+ + +

+ +

+ + +
+ + + + + + + + + +

+
+ + + + + + + + + + + + + + + + + + +

0%

25%

50%

75%

100%

 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252
Months

P
ro

ba
bi

lit
y

laravel npm r wp

(a) Probability per ecosystem

+ +

+

+

+ + + + + + + + + + + + + + + + + + + +

0%

25%

50%

75%

100%

 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252
Months

P
ro

ba
bi

lit
y

Organization User

(b) Probability per project type

+

+

+
+ + + + + + + + + + + + + + +

+
+ + +

+ + +
+ + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + +

0%

25%

50%

75%

100%

 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252
Months

P
ro

ba
bi

lit
y

1 2 3

(c) Probability per community size

+
+ + + +

+ + +

+

+

+ + + + + + + + + + + + +

+
+ + +

+ + +
+ +

+ +
+ + +

+
+ + +

+ + +
+ +

+
+
+ + + + + + +

+ + + + +

+ + +
+ +

+ +
+
+
+
+ +

+

+

+ + + +

+
+ + + +

+ + + +
+
+ + +

+

+

+ +

0%

25%

50%

75%

100%

0 12 24 36 48 60
Months

P
ro
ba
bi
lit
y

Organization User

Tier 1

Tier 2

Tier 3

(d) Probability per community size and project type

Figure 7: Probability of survival over time.

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Ait, et al.

Analysis of a project’s activity to do forecasting. The low
survival rate detected in our study could motivate further analysis
of potential correlations between the project’s survivability and
patterns in the repository activity. For instance, Figure 8 shows
three examples of project’s activity during its first year of life via
line graphs. In this graph, the activity for each project resource is
represented by a line (see commits, issues and prs), and also their
aggregation (see general line). The horizontal axis shows the time
since the beginning of the project (inmonths), while the vertical axis
shows the count of the project resource measured. The examples
shown in the Figure illustrate different situations that may help to
forecast the project’s future, specifically: (1) a long-living project
with similar activity in all its resources (cf. Figure 8a); (2) a project
which dies after some months of life (cf. Figure 8b); and (3) a project
with intermittent commit activity (cf. Figure 8c) and eventually
died at the age of three (not shown in the Figure). We believe that
this kind of temporal information could help on building intelligent
solutions to deploy forecast models in order to know whether a
project is likely to survive given the activity during its starting
months. The work by Coelho et al. [5] could be useful here. For
instance, we could see to integrate some temporal data as new
features in the Machine Learning (ML) model.

Recommendations to keep projects alive. Beyond a pure ML-
based forecasting, we also believe that the study of the set of alive
projects could help to identify some red flags that could signal the
decay of a project. Or the complete opposite, factors that positively
influence the chances of having a long and peaceful live. Some of
these factors (i.e., entering a zombie status for the former, growing
your community size for the latter) have been discussed before and
therefore could be used as immediate recommendations.

But a more fine-grained analysis could involve techniques for
measuring the similarity between time series data, such as Dynamic
Time Warping (DTW). DTW is a method which takes two time
series data sequences and returns the minimum distance between
them. By analyzing the minimum distance between the time series
of alive projects we could identify concrete temporal patterns that
are shared by successful projects. These evidences could be used
to build systems which monitor projects in order to send early
warning messages to project communities of projects at risk.

Impact of non-coding contributors. There is a general consen-
sus on the importance of non-coding contributors. In fact, previous
work (i.e., [13]) demonstrated the relevance of non-coding contri-
butions in a set of NPM projects in GitHub. Nevertheless, our study
has shown a low impact of non-coding contributors in the project’s
survivability (e.g., low presence of Zombie state in evolution paths).
We believe it is important to study (and deploy) mechanisms that
help these non-coding contributors to keep the project active. Either
by becoming code contributors themselves, by positively influenc-
ing code contributors or by making their life easier proactively
helping in the detection, classification and prioritization of project
tasks

Project’s survival beyond the original repository. The devel-
opment of OSS projects in online social platforms such as GitHub
usually involves activity beyond the original repository, as con-
tributors can fork it and advance the project in their own user

1

10

100

1000

 1 2 3 4 5 6 7 8 9 10 11 12

Month

C
ou

nt

general commits issues prs

(a)

1

3

10

30

 1 2 3 4 5 6 7 8 9 10 11 12

Month

C
ou

nt
general commits issues prs

(b)

1

3

10

30

 1 2 3 4 5 6 7 8 9 10 11 12

Month

C
ou

nt

general commits issues prs

(c)

Figure 8: Examples of evolution of activity in GitHub reposi-
tories during the first months of life.

(or organization) space. Contributions to these forks can later be
sent back to the original repository via pull requests, but they can
also evolve independently. While our study did consider the pull
requests it did not count as surviving projects those projects where
the original repository died, but a fork was still alive. We believe it
would be interesting to study the potential impact of forks on our
survival rate results.

Impact of bots in the survival rate In the study performed in
RQ2, where we studied the survival analysis according to the origin
of the status of a project, we filter out the bot activity of a project
(see also Section 7). Projects with no human activity are considered
dead at the end of the study even if bots may be still updating
some project dependencies or automatically performing some other
minor maintenance tasks. Given the growing popularity of bots in
all areas, we believe it is worth to have an open discussion on the

An Empirical Study on the Survival Rate of GitHub Projects MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

future role of bots in software development and how they should
be counted in empirical software analysis works.

The sustainability challenge. Being the core of the digital infras-
tructure, the evolution of Open Source projects has a significant
impact on the future of our society. However, the low survival rate
reported by our findings put at risk this balance and affects the
sustainability of Open Source. We believe that the low survival rate
reported by our findings emphasizes the need for more sustain-
ability efforts in the long term. On top of some of the discussion
points above, initiatives such as SustainOSS7 or CHAOSS project8
could also help on contextualizing our results and exploring how
to address this issue.

6 REPLICABILITY PACKAGE
To facilitate the replication of our study, we have prepared a GitHub
repository9 for researchers interested in repeating or complement-
ing our evaluations. The repository includes the main elements of
our dataset (i.e., graphs in different formats) together with the data
used in the study.

7 THREATS TO VALIDITY
Our work is subjected to a number of threats to validity, namely:
(1) internal validity, which refers to the inferences we made; and
(2) external validity, which is related to the generalization of our
findings.

Regarding the internal validity, in this study we relied on the
collaboration graphs provided by SourceCred, which uses the in-
formation available via the GitHub API. The data provided by this
API may not be complete, which causes either missing edges or the
generation of dangling edges in the graph. In our study, we have
detected that missing edges appear when repository assets (e.g., a
commit, issue, pull request, review or comment) are not connected
to the corresponding author, which usually happens when the au-
thor does not exist anymore because he/she abandoned the platform.
Nonetheless, we checked that the ratio of missing edges is on av-
erage 6% for the ecosystems considered. Regarding the dangling
edges, we checked that our study was not affected by this issue.

Another threat which affects the internal validity is the right-
censoring of the data, which appears when it is not possible to know
the exact survival time of all the participants in the study, e.g., due
to time limits in the study. This means that it may happen that a
project classified as dead in our study may reactivate after the six-
year period considered in our work. As most survival analyses, it is
important to consider this analytical problem when interpreting
the results of the study.

Related to the data quality, the identification of actual software
developing projects (i.e., engineered software projects) and not toy
projects (e.g., projects addressing homework assignments) is a chal-
lenging task [22]. Projects in our dataset are collected from a set of
ecosystems devoted to create packages or plugins for well-known
platforms, which should restrict the number of toy projects col-
lected. Nevertheless, we believe that this threat as those regarded as
toy ones may later be reused (e.g., as templates) to create packages

7https://sustainoss.org/
8https://chaoss.community/
9http://hdl.handle.net/20.500.12004/1/C/MSR/2022/395

or plugins, with the consequent impact if the toy project is not
maintained. Also, to distinguish between users and bots Source-
Cred also relies on the GitHub API. However, this task is far from
trivial [10] and sometimes not all the information is available via
the API, thus we may have missed some bots, which could have
influenced in showing some project as alive when the only activity
is due to bots.

Another threat is related to our choice ofmethods and techniques.
To minimize this, we have carefully reported each step of our study
and also provided a companion package to promote replicability
(cf. Section 6).

As for the external validity, note that our dataset is based on the
set of GitHub projects tagged with specific labels to identify their
ecosystem, which was captured as of October 15𝑡ℎ 2021; and there-
fore our results should not be directly generalized to other types of
Open Source projects without proper comparison and validation.
Note that we consider the topic of a repository in GitHub as a source
of truth, but it may be possible that some repositories are incorrectly
classified. Also, the results of this paper should not be generalized
as a measure of success (or failure) for GitHub projects. We ac-
knowledge that there may be a complex interrelationship between
survival analysis and such a measure, but further work is needed.

8 RELATEDWORK
The study of OSS software development is a broad area of re-
search which has been studied from a number of different per-
spectives [6, 8, 14]. In this section we specifically review previous
related work on survival and abandonment analysis, as well as
temporal analysis in GitHub.

8.1 Survival and Abandonment Analysis
The work by Samoladas et al. [23] presented a framework for as-
sessing the survival probability of a FLOSS project, and applied
it to a set of OSS projects. The results on survival probability are
similar to ours. Unlike our work, their framework relied only on
commit activity, and they categorized the projects according to
their purpose (e.g., database, multimedia, etc.).

Other than the previous work, the study of survivability of OSS
projects has usually been related to the application of specific con-
tributor activity metrics. Avelino et al. [1] studied the Truck Fac-
tor Developer Detachment (TFDD) in Open Source, that is, what
happens when influential developers abandon the project. They
performed an empirical study with 1,932 GitHub projects and stud-
ied how TFDD affected their survival rate. They concluded that
TFDD happen in Open Source projects and identified enablers and
barriers to overcome the potential abandonment of a project.

The work by Bao et al. [2] investigated whether newcomers will
become Long-Term Contributors (LTCs) in GitHub projects, that
is, contributors who stay within the project for a long time and
therefore play important roles in the success of the project. They
built a dataset of 917 projects and used several time intervals to
build a predictive model. Related to the LTCs metric, the work by
Kumar Eluri et al. [9] applied machine learning methods to GitHub
activity data to predict whether a contributor will become a LTC
of the project. Their results reveal that random forest is the most

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Ait, et al.

effective classifier and that the number of followers is the most
important feature to predict the LTC status.

Recently studies of contributor disengagement have been con-
ducted by Miller et al. [20] and Iaffaldano et al. [12]. The former
studied the reasons why contributors disengage by performing a
survey and building a survival model to quantify factors which pre-
dict disengagement. The latter is a position paper which explored
the active/inactive/abandon cycles in the contributor activity track.

Krishnamurthy [17] studied whether the development process
of the top 100 mature projects in Sourceforge is driven either by a
small set of core developers or by an organized community. Among
its results, the study reveals that the most of the projects are devel-
oped by individuals, rather than communities. Calefato et al. [3]
analyzed the lifecycle of OSS project developers concerning their
breaks and disengagement. Their results show that breaks are rather
common, specially in core contributors; and that once a contributor
disengages it is less likely to rejoin the project. A similar study was
conducted by Coelho et al. [4], who performed a survey on a set of
deprecated Open Source GitHub systems to analyze the reasons of
the failure of projects.

Unlike previous works, ours does not focus on specific contribu-
tor activity metrics, but on the overall activity of the project. Nev-
ertheless, these previous works could complement our approach,
e.g. we could try to correlate the presence of some specific types of
contributors with the project survival.

Finally, the work by Khondhu et al. [15] studied the inactivity
levels in OSS projects to characterize the project’s maintenance
status when developers hand off the project to other developers.
They define project’s status similar to ours (e.g., dormant or active
in their case) and study the impact in the project’s maintainability
index. Although they did not aim at studying projects’ survivability,
their approach may help to better characterize the survival of OSS
projects. On the other hand, the work by Coelho et al. [5] proposed
an approach to measure the level of maintenance activity of projects
and trained a machine learning model to infer such maintenance
status in GitHub projects. Their work also performed a survival
analysis of OSS projects, but using different dimensions to ours
and based on archived or self-declared unmaintained projects while
our analysis performs a more exhaustive analysis of all available
projects in the targeted ecosystems. Furthermore, the survival de-
termination analysis relied on their ML trained model while we
used the actual data from project’s repositories.

8.2 Temporal Analysis in GitHub
GitHub has been subject of a limited number of studies with a focus
on temporal analysis. For instance, Mitropoulos et at. [21] studied
different temporal aspects in the JavaScript code of 10,000 websites,
including the development pace, dependency evolution and quality
of code evolution. They concluded that the lifespan of most of the
JavaScript code is short, thus indicating a high development pace.
These results seem to be aligned with the results of our work.

The relationship and evolution of different software popularity
measures in GitHub was studied by Zerouali et al. [26]. In particular,
they performed a correlation analysis of popularity measures in
libraries.io, NPM and GitHub; both within the repository and cross
repositories. Their results revealed that many popularity metrics

are not strongly correlated, thus implying that the use of different
metrics may produce different outcomes.

Varuna et al. [25] proposed a model for predicting trends in
GitHub, in particular, the repository, language and domain trends.
Using the main project’s activity events, they proposed a predic-
tor with time series forecasting using Long Short Term Memory
(LSTM) model.

A study of the reasons to fork in GitHub was performed by
Zhou et al. [27]. They classified forks into social ones, when done
using GitHub forking feature; and hard ones, when the fork is done
making a separate copy of the repository. Their results reveal that
hard forks often evolve out of social forks rather than being planned
deliberately. Our study does not include forked projects, however,
it could be extended in the future to consider forked projects as
extensions of the lifetime of the original project.

Overall, we believe our study covers a gap in the systematic study
of survival rate and early development dynamics in open source
projects by performing a systematic study on top of four popular
project ecosystems. We hope our results can be used as the basis
of additional analysis that help improving the survival rate, as we
also discussed in Section 5.

Last but not least, survival analysis may also be related to the
study of project’s success, although we believe such relationship
should be studied carefully (cf. Section 7). The works by Midha et
al. [19] or Subramaniam et al. [24] identify project’s characteristics
which may influence its success, and could be helpful to explore
this relationship, in particular, time-dependent characteristics.

9 CONCLUSION
We have conducted an empirical study on the survivability of 1,127
GitHub projects, collected from four ecosystems, specifically: NPM
packages, R packages,WordPress plugins and Laravel packages. Our
results reveal that the prototypical development process consists
of intensive active periods, where the main activity is focused on
coding tasks; followed by long periods of inactivity. An analysis of
the survival rate showed that many projects die in their first year of
life and more than a half of them does not live more than four years
though projects developed by an organization or that managed to at-
tract a large number of contributors have better chances of survival.

We believe these results are useful to understand the dynamics
of Open Source in online platforms such as GitHub. These results
are also useful to raise awareness on the volatility of Open Source
projects and the risks incurred by many organizations that heavily
rely on Open Source projects without paying attention to their
health nor contributing to their sustainability. Note that it could
be argued that some projects are small and focused, and therefore
their development naturally stops shortly after its creation. We
believe this may be true only for a few number of projects as at
least some minimal maintenance work (e.g., to fix potential security
vulnerabilities) is generally required, as it happens in the projects
of our dataset, where projects are packages (or libraries) from an
evolving software ecosystem.

This is part of our future work, as well as expanding the number
of projects considered in the study to cover other ecosystems. We
are also interested in studying how to consider the evolution of
project’s community size in survival analysis, as current approach

An Empirical Study on the Survival Rate of GitHub Projects MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

considers the community size as fixed, but it actually evolves along
the lifespan of the project. Other interesting topics to consider as
further work have been commented in Section 5 and include, for
instance, the construction of intelligent systems able to forecast
the survivability of OSS projects and to flag those projects at risk
of dying soon (e.g., projects entering the zombie state) so that
corrective community actions can be put in place.

ACKNOWLEDGEMENTS
This work has been partially funded by the Spanish government
(LOCOSS project - PID2020-114615RB-I00).

REFERENCES
[1] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander

Serebrenik. 2019. On the Abandonment and Survival of Open Source Projects:
an Empirical Investigation. In Int. Symp. on Empirical Software Engineering and
Measurement. 1–12.

[2] Lingfeng Bao, Xin Xia, David Lo, and Gail C. Murphy. 2021. A Large Scale Study
of Long-time Contributor Prediction for GitHub Projects. IEEE Trans. Software
Eng. 47, 6 (2021), 1277–1298.

[3] Fabio Calefato, Marco Aurélio Gerosa, Giuseppe Iaffaldano, Filippo Lanubile,
and Igor Steinmacher. 2021. Will you Come Back to Contribute? Investigating
the Inactivity of OSS Core Developers in GitHub. Empir. Softw. Eng. (to appear)
(2021).

[4] Jailton Coelho andMarco Tulio Valente. 2017. WhyModern Open Source Projects
Fail. In Joint Meeting on Foundations of Software Engineering. 186–196.

[5] Jailton Coelho, Marco Tulio Valente, Luciano Milen, and Luciana Lourdes Silva.
2020. Is this GitHub Project Maintained? Measuring the Level of Maintenance
Activity of Open-source Projects. Inf. Softw. Technol. 122 (2020), 106274.

[6] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2017. A
Systematic Mapping Study of Software Development with Github. IEEE Access 5
(2017), 7173–7192.

[7] Kevin Crowston and James Howison. 2006. Assessing the Health of Open Source
Communities. Computer 39, 5 (2006), 89–91.

[8] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. 2012.
Free/libre Open-source Software Development: what we Know and what we do
not Know. ACM Comput. Surv. 44, 2 (2012), 7:1–7:35.

[9] Vijaya Kumar Eluri, Thomas A. Mazzuchi, and Shahram Sarkani. 2021. Predicting
Long-time Contributors for GitHub Projects Using Machine Learning. Inf. Softw.
Technol. 138 (2021), 106616.

[10] Mehdi Golzadeh, Damien Legay, Alexandre Decan, and Tom Mens. 2020. Bot
or Not?: Detecting Bots in Github Pull Request Activity Based on Comment
Similarity. In Int. Conf. on Software Engineering. ACM, 31–35.

[11] Hideaki Hata, Nicole Novielli, Sebastian Baltes, Raula Gaikovina Kula, and
Christoph Treude. 2022. Github Discussions: an Exploratory Study of Early
Adoption. Empir. Softw. Eng. 27, 1 (2022), 3.

[12] Giuseppe Iaffaldano, Igor Steinmacher, Fabio Calefato, Marco Aurélio Gerosa,
and Filippo Lanubile. 2019. Why do Developers Take Breaks from Contributing
to OSS Projects?: a Preliminary Analysis. In Int. Workshop on Software Health.
9–16.

[13] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2022. On the Analysis of Non-
coding Roles in Open Source Development. Empir. Softw. Eng. 27, 1 (2022), 18.

[14] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
Germán, and Daniela E. Damian. 2016. An In-depth Study of the Promises and
Perils of Mining Github. Empir. Softw. Eng. 21, 5 (2016), 2035–2071.

[15] Jymit Khondhu, Andrea Capiluppi, and Klaas-Jan Stol. 2013. Is it all Lost? a Study
of Inactive Open Source Projects. In Int. Conf. on Open Source Software: Quality
Verification, Vol. 404. 61–79.

[16] David G. Kleinbaum and Mitchel Klein. 2005. Survival Analysis: A Self-Learning
Text. Springer Science and Business Media, LLC.

[17] Sandeep Krishnamurthy. 2002. Cave or Community?: an Empirical Examination
of 100 Mature Open Source Projects. First Monday 7, 6 (2002).

[18] Josianne Marsan, Mathieu Templier, Patrick Marois, Bram Adams, Kevin Carillo,
and Georgia Leida Mopenza. 2019. Toward Solving Social and Technical Prob-
lems in Open Source Software Ecosystems: Using Cause-and-effect Analysis to
Disentangle the Causes of Complex Problems. IEEE Softw. 36, 1 (2019), 34–41.

[19] Vishal Midha and Prashant Palvia. 2012. Factors Affecting the Success of Open
Source Software. J. Syst. Softw. 85, 4 (2012), 895–905.

[20] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu.
2019. Why do People Give up Flossing? a Study of Contributor Disengagement
in Open Source. In Int. Conf. on Open Source Systems, Vol. 556. 116–129.

[21] Dimitris Mitropoulos, Panos Louridas, Vitalis Salis, and Diomidis Spinellis. 2019.
Time Present and Time Past: Analyzing the Evolution of Javascript Code in the
Wild. In Int. Conf on Mining Software Repositories. 126–137.

[22] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for Engineered Software Projects. Empir Software Eng. 22 (2017),
3219–3253.

[23] Ioannis Samoladas, Lefteris Angelis, and Ioannis Stamelos. 2010. Survival Analysis
on the Duration of Open Source Projects. Inf. Softw. Technol. 52, 9 (2010), 902–922.

[24] Chandrasekar Subramaniam, Ravi Sen, and Matthew L. Nelson. 2009. Determi-
nants of Open Source Software Project Success: a Longitudinal Study. Decis.
Support Syst. 46, 2 (2009), 576–585.

[25] T. V. Varuna and Anuraj Mohan. 2019. Trend Prediction of GitHub Using Time
Series Analysis. In Int. Conf. on Computing, Communication and Networking
Technologies. 1–7.

[26] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesús M. González-Barahona.
2019. On the Diversity of Software Package Popularity Metrics: an Empirical
Study of NPM. In Int. Conf on Software Analysis, Evolution and Reengineering.
589–593.

[27] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. 2020. How has Forking
Changed in the Last 20 Years?: a Study of Hard Forks on GitHub. In Int. Conf. on
Software Engineering. 445–456.

	Abstract
	1 Introduction
	2 Background
	2.1 GitHub
	2.2 Time Series and Survival Analysis

	3 Research Method
	3.1 Research Questions
	3.2 Dataset Construction
	3.3 Dataset Descriptive Statistics

	4 Results
	4.1 RQ1
	4.2 RQ2

	5 Discussion
	6 Replicability Package
	7 Threats to Validity
	8 Related Work
	8.1 Survival and Abandonment Analysis
	8.2 Temporal Analysis in GitHub

	9 Conclusion
	References

