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ABSTRACT

Software repositories is one of the sources of data in Empirical
Software Engineering, primarily in the Mining Software Reposito-
ries field, aimed at extracting knowledge from the dynamics and
practice of software projects. With the emergence of social coding
platforms such as GitHub, researchers have now access to millions
of software repositories to use as source data for their studies. With
this massive amount of data, sampling techniques are needed to
create more manageable datasets. The creation of these datasets is a
crucial step, and researchers have to carefully select the repositories
to create representative samples according to a set of variables of
interest. However, current sampling methods are often based on
random selection or rely on variables which may not be related
to the research study (e.g., popularity or activity). In this paper,
we present a methodology for creating representative samples of
software repositories, where such representativeness is properly
aligned with both the characteristics of the population of reposito-
ries and the requirements of the empirical study. We illustrate our
approach with use cases based on Hugging Face repositories.
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1 INTRODUCTION

Empirical software engineering is usually defined as the study of
software engineering following an empirical method, which in-
cludes case studies, and different types of measurement and anal-
ysis [12]. One crucial part to enable the empirical method is the
provision of the empirical data to be analyzed.

Software repositories have traditionally been one of the main
sources of data in empirical software engineering, primarily in
the Mining Software Repositories (MSR) field, aimed at extracting
knowledge from the dynamics and practice of software projects.
With the emergence of Open-Source Software, empirical studies
have mainly relied on social coding platforms, being GitHub the
most representative one, with more than 80 million users and 200
million repositories. This large number of repositories makes un-
feasible the analysis of the whole population and prompts sampling
as a mandatory process in empirical studies.

When building samples, its representativeness, that is, how well
the sample resembles the population of interest, is key to ensure the
quality of the study. Representativeness is usually measured accord-
ing to one ormore variables of interest, which should be the relevant
variables of the empirical study. However, guaranteeing represen-
tativeness is hard, as researchers should consider methodological
aspects and constraints such as the type and range of the variables,
the composition of variables or the use of stratified methods.

Current approaches do not provide clear methods for creat-
ing representative samples of software repositories. For instance,
Cosentino et al. [6] performed a systematic mapping study and
found that few works applied probabilistic sampling. Moreover,
they revealed that stratified random sampling, which takes into
account project and user diversity [11], is only applied in just 3.2%
of the works. Only a few studies use random sampling (e.g., [2, 4]),
but their samples are either too small to assume representativeness
or drawn conclusions from biased sampling frames [4]. Ayala et
al. [3] noticed that most of the analyzed mining software reposi-
tory studies did not select their repositories following any random
sampling. In fact, a common approach relies on a single variable for
sampling (e.g., number of stars or followers) and selects a number
of the top repositories according to that variable, thus hampering
the representativeness of the sample.

In this paper, we propose a four-step method to create represen-
tative samples of software repositories relying on the variables of
interest and the characteristics of the repositories. We illustrate our
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approach with use cases based on Hugging Face repositories. We
provide an implementation of the approach which also includes a
replicability package.

The paper is structured as follows. Section 2 presents the back-
ground. Section 3 describes our approach. Section 4 presents the
related work, and Section 5 concludes the paper.

2 BACKGROUND

In this section, we present the concepts of sampling, representa-
tiveness, and sampling of software repositories. We end the section
with a running example.

2.1 Sampling

Sampling is the process of systematically selecting a subset of ele-
ments from a large population to make inferences about the entire
population. In most sampling situations, it is crucial to assess the
accuracy or confidence associated with the inferences. Common
measures used to evaluate accuracy include confidence intervals or
margin of error, each offering valuable insights into the reliability
of the inferences.

Stratified sampling is a technique broadly used to improve pre-
cision and promote representativeness in the inferences [10]. In
stratified sampling, the population is partitioned into independent
regions or strata, and a sample is then done within each stratum.
Since strata sampling is made independently, the variances of infer-
ence results for individual strata can be added to obtain the variance
for the whole population. Furthermore, as only the within-stratum
variances enter into the variances of estimators, the principle of
stratification is to partition the population in such a way that the
elements within a stratum are as similar as possible. Stratified sam-
pling is preferred when subgroups of the population may have
different mean values for the targeted variables [10].

If performed correctly, stratified sampling will provide precise
(i.e., low variance) estimates for the whole population [10, 13]. Note
that stratified sampling is usually applied to the full set of variables
under study, but in the context of this work, we apply stratification
to the variables of interest.

2.2 Representativeness

The concept of representativeness has been discussed in previ-
ous works [4]. We say that a sample is representative when each
sampled element represents the variables of a known number of
elements in the population.

To ensure representativeness, the sampling strategy must be
robust against [10]: (1) selection bias, (2) measurement bias, and
(3) sampling and non-sampling errors. Selection bias occurs when
some part of the target population is not in the sampled population.
Measurement bias occurs when the measuring instrument tends to
differ from the true value of the population. Sampling errors refer
to the variability introduced by the random selection process, while
non-sampling errors are any errors that cannot be attributed to the
sample-to-sample variability (e.g., missing or invalid values).

To measure the sampling error, two parameters are used [10, 13]:
(1) margin of error and (2) confidence level. The margin of error 𝜖
represents the maximum acceptable difference between the sam-
ple estimate and the true population value (i.e., smaller 𝜖 implies
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Figure 1: Part of the conceptual schema of HFCommunity.

greater precision or representativeness). The confidence level, usu-
ally expressed as a percentage, indicates the degree of certainty
that the true value of the population parameter lies within the 𝜖
(i.e., higher confidence levels ensure that the results are reliable).

2.3 Sampling Software Repositories

When performing empirical software studies in the MSR field, the
source of data is usually social coding platforms (e.g., GitHub
or Hugging Face). As these platforms host thousands, or even
millions, of repositories, the amount of data to perform empirical
studies is massive and the use of sampling techniques is mandatory.
Furthermore, sampling should address the variables of interest in
the study. For instance, a study on repository types of Hugging
Face (i.e., datasets, models or spaces) would require building a
sample with a representative number of repositories of each type.
However, current sampling methods are often based on random
selection and/or rely on variables which may not be related to
the study (e.g., top-most liked repositories), thus hampering the
representativeness of the sample.

Sampling strategies in software repositories are inherently ro-
bust against selection and measurement bias, as we have access to
the entire population and the absence of a measurement instrument,
respectively. However, sampling errors and non-sampling errors
can still occur andmust be handled appropriately. The former can be
measured using 𝜖 and confidence levels for each variable, while the
latter mainly appears as Not a Number (NaN) values. By carefully
selecting 𝜖 and dealing with NaN values, we can ensure that our
sample represents the whole population within a range of certainty.

2.4 Running Example

To illustrate our approach, we will use a running example based on
HFCommunity [1], an offline database built from the data available
at the Hugging Face Hub (HFH). HFH is a social coding platform
to host machine leargning models, datasets and spaces (i.e., reposi-
tories aimed at showcasing models). These artifacts are hosted as
Git repositories, with additional social features such as discussion
threads. Since its creation, HFH has been rapidly growing up to the
number of more than 950k public repositories by April 2024.

HFCommunity collects data from HFH and Git repositories, and
stores it in a relational database to facilitate their analysis. HFCom-
munity provides both HFH and Git history data as a SQL dump,
periodically released. Figure 1 shows a snippet of the conceptual
schema of HFCommunity.
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Figure 2: Our approach.

As running example, we will use three use cases based on HF-
Community repositories, to build representative samples based on
(1) one numerical variable, (2) one categorical variable, and (3) two
variables of different type.

3 OUR APPROACH

We have developed a methodology employing stratified random
sampling to create representative samples of software reposito-
ries, focusing on key variables of interest. Figure 2 illustrates our
approach. The process is split into four phases: (1) variable selec-
tion, (2) variable analysis, (3) composition, and (4) sample creator.
Variable analysis is further divided into two steps, namely: prepro-
cessing and stratification. Next, we describe each step and illustrate
their application in the three use cases of our running example.
Finally, we describe the implemented tool support.

3.1 Variable Selection

This phase identifies the variables which will drive the creation
of the sample. The selection process must carefully be performed,
as the resulting sample will be representative of the population
based on these key variables. Note that the resulting sample will
include both the selected variables and the remaining variables of
the population dataset.
Case #1. We will build a sample using the numerical variable likes
of the Repository class, which indicates the number of likes for
the repository.
Case #2. We will build a sample using the categorical variable type
of the Repository with three possible values (i.e., dataset, model,
and space).
Case #3. We will build a sample using the variables likes and
type, thus mixing variables of different types.

3.2 Variable Analysis

This phase performs the analysis of the selected variables. We
consider two types of variables: numerical and categorical. The
numerical variables refer to data that is measured on a continuous
scale (e.g., number of likes or downloads). On the other hand, cate-
gorical variables refer to data that can be divided into groups (e.g.,
programming languages used in the code or the license). The anal-
ysis process includes two steps: preprocessing and stratification.
Next, we describe each step and illustrate the application in the
three use cases.

3.2.1 Preprocessing. This step focuses on studying the descrip-
tive characteristics (e.g., range, distribution, etc.) of the variable.
In particular, a key aspect is to handle non-sampling errors (i.e.,
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Figure 3: Data Distribution of the sample for type variable.
(a) Original and (b) sample data distribution.

missing or NaN values), as commented in Section 2.3. For numeri-
cal variables, they can be imputed or removed. Imputation is the
process of replacing missing data with calculated values (e.g., mean
or median). While the imputation is desired in those cases where
all the observations are required for the analysis, removal is applied
when these values do not provide any information. When sampling
software repositories, in most cases the suitable solution is to re-
move those observations where the numerical variable has a NaN
value, as imputing them usually introduces false information. Once
the NaN/missing values have been addressed, we will proceed to
calculate essential statistical metrics such as the population size,
mean, and standard deviation. These calculations will allow us to
compare these metrics with the corresponding values derived from
our sample.

For categorical variables, we do not exclude NaN values; instead,
we classify NaN values as an additional category and include them
in the sampling process. NaN values in categorical variables can
carry meaningful information about missing data patterns, and
their inclusion ensures that the sample accurately represents all
aspects of the population. For instance, given a categorical variable
indicating the programming languages used in a repository, a miss-
ing or NaN value may mean either the repository does not include
code or that no language has been reported. Furthermore, since
categorical variables do not require the calculation of statistical
values (e.g., for imputing), treating NaN values as another category
does not affect representativeness.
Case #1. The variable likes comprises 674,827 observations, which
corresponds to the whole set of repositories in HFCommunity.
The distribution of this variable is very skewed, as the majority
of values are either 0 or close to 0. As there is little consensus
when reporting descriptive statistics for skewed data, we report
median, Inter-quartile Range (IQR), average, and standard deviation.
A repository has a median number of 0.0 likes and IQR of (0,0)
(𝜇 = 1.13, 𝜎 = 28.13).
Case #2. The variable type has a total of 674,827 observations,
from which there are 456,303 models, 101,681 datasets, and 116,843
spaces, with no missing values. Figure 3a shows the distribution of
the categories.
Case #3. The variables considered in this use case have been already
described in the previous cases.

3.2.2 Stratification. The stratification process depends on the vari-
able type. For numerical variables, we propose to apply a clustering
algorithm to define the strata. We suggest the K-means algorithm,
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which is widely used in data mining, but other clustering algo-
rithms may be considered according to the data characteristics. The
K-means algorithm clusters data into 𝐾 groups based on data simi-
larities, iteratively assigning observations to clusters that minimize
variance within each cluster and maximize differences between
clusters.

We have a population divided into K disjoint strata. Given a finite
population of size𝑁 , the sizes of the different strata,𝑁1, 𝑁2, . . . , 𝑁𝐾 ,
are known, where 𝑁 =

∑𝐾
𝑖=1 𝑁𝑖 . The proportion of elements of the

population within the 𝑖-th stratum is 𝜙𝑖 =
𝑁𝑖

𝑁
. In stratum 𝑖 , the

mean of the variable of interest is 𝜇𝑖 and its standard deviation is
𝜎𝑖 . The population mean 𝜇 can be expressed as listed in Equation 1,
which is the weighted mean of the means within each stratum.

𝜇 =

𝐾∑︁
𝑘=1

𝜙𝑘𝜇𝑘 (1)

For each stratum 𝑘 , we build a sample of size 𝑛𝑘 , where the
estimator of the mean in such stratum is shown in Equation 2.

𝑥𝑘 =
1
𝑛𝑘

𝑛𝑘∑︁
𝑖=1

𝑥𝑘𝑖 (2)

Substituting the mean 𝜇𝑘 of each stratum by its estimator 𝑥𝑘 in
Equation 1, we get the estimated population mean, or sample mean
(see Equation 3).

𝑥 =

𝐾∑︁
𝑘=1

𝜙𝑘𝑥𝑘 (3)

Assuming that the observations within each stratum are made
independently, the variance of the estimated population mean is
defined in Equation 4.

𝑉𝑎𝑟 (𝑥) =
𝐾∑︁
𝑘=1

𝜙2
𝑘
𝑉𝑎𝑟 (𝑥𝑘 ) (4)

Since our population is finite, Var(𝑥𝑘 ) =
𝜎2
𝑘

𝑛𝑘

(
1 − 𝑛𝑘

𝑁𝑘

)
, where

𝜎2
𝑘
is the variance of the variable of interest in the 𝑘-th stratum.

Equation 5 shows the variance of the estimated population mean
in this case.

𝑉𝑎𝑟 (𝑥) =
𝐾∑︁
𝑘=1

𝜙2
𝑘

𝜎2
𝑘

𝑛𝑘

(
1 − 𝑛𝑘

𝑁𝑘

)
(5)

If the variance 𝜎2
𝑘
is not known, it can be estimated using the

corresponding sample variance for the 𝑘-th stratum 𝑠2
𝑘
. Using 𝑠2

𝑘
,

the variance of the estimated population mean, or variance of the
sample mean, would be obtained from the previous Equation 5,
expressed in Equation 6.

𝑠2
𝑥
=

𝐾∑︁
𝑘=1

𝜙2
𝑘

𝑠2
𝑘

𝑛𝑘

(
1 − 𝑛𝑘

𝑁𝑘

)
(6)

Equation 7 shows the confidence interval for the population
mean with large 𝑛, where 𝑧1−𝛼/2 is the critical value of the standard
normal distribution for a specific level of confidence, and 𝑠𝑥 is the
standard deviation of the sample mean.

𝜇 ∈
[
𝑥 ± 𝑧1−𝛼/2𝑠𝑥

]
(7)

To estimate 𝜇 with an error no greater than 𝜖 and a confidence
of 1 − 𝛼 , the sample size is obtained by solving the Equation 8.

𝜖 = 𝑧1−𝛼/2𝑠𝑥 (8)
To calculate the sample size 𝑛, we rely on the Equation 8. As

our population is of finite size 𝑁 , considering Equation 6, we can
obtain Equation 9.

𝜖 = 𝑧1−𝛼/2

√√√
𝐾∑︁
𝑖=1

𝜙22
𝑠2
𝑖

𝑛𝑖

(
1 − 𝑛𝑖

𝑁𝑖

)
(9)

To solve this equation, we first need to decide how to distribute
the sample size 𝑛 into the sample sizes 𝑛1, 𝑛2, . . . , 𝑛𝐾 for each stra-
tum, using an allocation method. Being 𝑛𝑖 = 𝑛 ·𝑤𝑖 the allocation
method used to distribute the sample, we have the results shown
in Equation 10.

𝜖 = 𝑧1−𝛼/2

√√√
𝐾∑︁
𝑖=1

𝜙2
𝑖

𝑠2
𝑖

𝑛𝑤𝑖

(
1 − 𝑛𝑤𝑖

𝑁𝑖

)
= 𝑧1−𝛼/2

√√√
𝐾∑︁
𝑖=1

𝜙2
𝑖
𝑠2
𝑖

(
1
𝑛𝑤𝑖

− 1
𝑁𝑖

)
(10)

If we isolate 𝑛 we obtain the result shown in Equation 11.

𝑛 =

∑𝐾
𝑖=1

𝜙2
𝑖 𝑠

2
𝑖

𝑤𝑖(
𝜖

𝑧1−𝛼/2

)2
+∑𝐾

𝑖=1
𝜙2
𝑖
𝑠2
𝑖

𝑁𝑖

(11)

There are three commonly used allocation methods: (1) uniform
allocation, (2) proportional allocation, and (3) optimal allocation.
We use the proportional allocation method, as it distributes the
sample size proportionally across the different strata within the
population. This method ensures that each stratum is adequately
represented in the final sample, thus enabling the results to be
generalized to the entire population [10]. Using the proportional
allocation method, Equation 12 calculates the size of the sample for
stratum 𝑖 . Note that the value of 𝑛𝑖 is rounded up.

𝑛𝑖 = 𝑛 · 𝑁𝑖
𝑁

= 𝑛 · 𝜙𝑖 (12)

Using the proportional allocation method,𝑤𝑖 = 𝜙𝑖 in 𝑛𝑖 = 𝑛 ·𝑤𝑖
before presented. Thus, Equation 11 becomes the Equation 13.

𝑛 =

∑𝐾
𝑖=1

𝜙2
𝑖 𝑠

2
𝑖

𝜙𝑖(
𝜖

𝑧1−𝛼/2

)2
+∑𝐾

𝑖=1
𝜙2
𝑖
𝑠2
𝑖

𝑁𝑖

(13)

Considering that in finite populations 𝜙𝑖 =
𝑁𝑖

𝑁
, the previous

Equation 13 reduces to Equation 14.

𝑛 =

∑𝐾
𝑖=1

𝑁𝑖

𝑁
𝑠2
𝑖(

𝜖
𝑧1−𝛼/2

)2
+ 1
𝑁

∑𝐾
𝑖=1

𝑁𝑖

𝑁
𝑠2
𝑖

(14)
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To obtain 𝑛, we have to define the margin of error 𝜀 and set the
confidence level 1−𝛼 . The choice of 𝜖 must be customized for each
variable since each one has a unique range, and there is no universal
value applicable to all. We propose to set 𝜖 using the mean of each
variable. Once the 𝜖 is set, a specific 𝜖 for each variable is calculated
by multiplying the mean by this value, that is, 𝜖 = 𝜇variable · 𝜖desired.

For categorical variables, this step is straightforward, as the strata
are inherently defined by the categories of the variable and each
category has a proportion 𝑝 within the population (see Equation 15).

𝑝 ± 𝑧1−𝛼/2

√︂
𝑝 (1 − 𝑝)

𝑛
(15)

We can directly select the desired sample size and perform the
sampling respecting the category proportions (𝑝) or calculate the
sample size given a desired 𝜖 and a confidence interval. The 𝜖 for
categorical variables is then calculated as shown in Equation 16.

𝜖 = 𝑧1−𝛼/2

√︂
𝑝 (1 − 𝑝)

𝑛
(16)

As before, we can isolate n from Equation 16 to calculate the size
of the sample and obtain Equation 17.

𝑛 =
𝑝 (1 − 𝑝)(

𝜖
𝑧1−𝛼/2

)2 (17)

Since we have multiple categories in each variable, to avoid cal-
culating different sample sizes for each category value, it is possible
to apply 𝑝 = 0.5, which maximizes the value of 𝜖 . Thus, substituting
the value of 𝑝 = 0.5 in Equation 16, we obtain a generalized formula
in Equation 18.

𝑛 =

(
𝑧1−𝛼/2
2𝜖

)2
(18)

Case #1. To perform the stratification, we apply the k-means cluster-
ing algorithm to generate the strata, leveraging the elbow method
to determine the optimal number of clusters, which is 3. Next, we
need to calculate the number of elements in each stratum applying
Equation 14. We also calculate the proportions of each segment
relative to the entire population, and the standard deviations for
each stratum. We apply the proportional allocation approach, use
an 𝜖 of 0.114 and a confidence interval of 0.95. By employing these
parameters along with the function governing sample size deter-
mination, we derive that for the likes variable, the overall sample
size must be 57,258 observations, and each of the 3 stratum will
have a size of 57,239, 18 and 1 observations.

Case #2. Since categorical variables define strata through their
categories, we can directly visualize the population distribution in
Figure 3a without the need for any additional clustering algorithms.
In this scenario, we need to calculate the proportions of the strata.
With an 𝜖 of 0.05 and a confidence interval of 0.95, a sample size of
385 was determined.

Case #3. The identification of the strata for likes and type vari-
ables have already been described in the previous cases.

Table 1: Composition and sampling process for likes and

type variables.

Composition Sampling

Stratum type likes n n

1 dataset [0, 437] 101,667 58
2 dataset [442, 2597] 13 0
3 dataset [2691, 9909] 1 0
4 model [0, 437] 456,149 260
5 model [442, 2597] 143 0
6 model [2691, 9909] 11 0
7 space [0, 437] 116,804 67
8 space [442, 2597] 38 0
9 space [2691, 9909] 1 0

3.3 Composition

This phase involves composing the strata of the selected variables
to form a new strata distribution. To this aim, we first generate all
possible combinations by means of a permutation process, and then
we select the valid ones. A combination of strata is valid when it
includes at least one member with observations for each variable
in the combination. Although several variables can be used for
the composition, we recommend using no more than four to six
variables, as the probability of some variables canceling the effects
of others increases with the number of variables.
Cases #1 & #2. As these use cases only consider one variable, there
is no need for the composition phase.
Case #3. We are composing a numerical variable with a categorical
one, so we generate all possible combinations. Each variable has
three strata. For the likes variable, the strata are defined by the fol-
lowing ranges: [0, 315], [2285, 9909], and [317, 1930]. For the type
variable, the strata include repositories of type dataset, model, and
space. By generating all possible combinations, we obtain 9 strata
as reported in the four first columns of Table 1.

3.4 Sampling

For numerical variables, we apply a probabilistic sampling method
such as simple random sampling to collect the observations for
each stratum. We also calculate the statistical parameters to enable
a comparison with those of the population. To ensure the quality
of the sample, the process can be applied iteratively, typically five
to ten times, to select the best sample according to the statistical
parameters.

For categorical variables, we extract samples from each stratum,
applying simple random sampling and maintaining their propor-
tions relative to the population. As commented in Section 3.2.2, we
can calculate the sample size either using the formula with a given
𝜖 and confidence interval, or directly choosing a sample size but
respecting the category proportions. In the former case, note that
there may be a slight discrepancy in the sample proportions.

When mixing both numerical and categorical variables, we apply
the same process applied for categorical variables, but for each
stratum of the resulting combination.
Case #1. To perform the sampling of the likes variable, we apply
iteratively the simple random sampling method to extract samples
from each stratum. We compute the estimation of the mean, the
standard error of the mean, and the confidence intervals to assess
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Table 2: Sampling process for the likes variable.

it. N n 𝜇 𝑥 C.I.
1 674,827 55,498 1.13 1.10 [0.99, 1.21]
2 674,827 55,498 1.13 1.15 [1.05, 1.27]
3 674,827 55,498 1.13 1.13 [1.02, 1.24]
4 674,827 55,498 1.13 1.16 [1.01, 1.27]
5 674,827 55,498 1.13 1.11 [1.00, 1.22]

the sample quality. Table 2 shows the results of the sampling process
using 5 iterations, being the iteration 3 the most appropriate.
Case #2. For the type variable, we conducted the sampling process
for each stratum. The sample has 385 observations, from which
there are 260 models, 58 datasets, and 67 spaces. Figure 3b shows
the distribution of the categories. Note that the distribution in the
sample is similar to the population distribution (cf. Figure 3a).
Case #3. The sampling process for the likes and type variables
builds 3 strata of a total size of 385 observations. The last column
of Table 1 shows the size of each stratum.

3.5 Tool Support

We have implemented in Python the corresponding tool support1,
which includes the four phases of the methodology and liberates
the user from dealing with the mathematical foundations. The tool
repository also includes a reproducibility and replicability package
for the use cases presented.

4 RELATEDWORK

Sampling in empirical software engineering is a crucial step to build
datasets. Nagappan et al. [11] noticed the need for sampling due
to the increasing number of Open-Source projects and proposed a
technique to assess howwell a study covers a population of projects.
Dabic et al. [7] presented a dataset to facilitate the sampling of
GitHub repositories, based on frequently used project selection
criteria in MSR studies. In this paper, we aim at facilitating the
creation of these samples.

Despite their relevance, the application of sampling methods is
far from normalized, as noted by the meta-analysis by Cosentino
et al. [6]. Other works have also noticed that the use of random
sampling is scarce [2–4].

Given this situation, there are works aimed at studying the task
of sampling in software engineering. Baltes et al. [4], conducted
a critical review to investigate how sampling methods are used
in software engineering. Besides addressing the common misun-
derstanding of the representativeness term, they provide a set of
guidelines for conducting, reporting and reviewing sampling. How-
ever, they do not provide a methodology, as we present in this paper.
Castaño et al. [5] delved into the tools and methodologies used in
their previous studies of HFH, and propose dimensions to consider
when performing sampling of HFH models, which might help in
selecting variables for sampling, but do not provide any method
to follow. Further studies [8, 9, 14] provide recommendations for
sampling in non-MSR studies. However, to the best of our knowl-
edge, there is no work providing a method to create representative
samples given a set of variables of interest in software repositories.

1https://github.com/SOM-Research/sample-creator

5 CONCLUSIONS

In this paper, we have presented a methodology for creating rep-
resentative samples of software repositories. Our approach allows
selecting one or more variables of interest related to software repos-
itories to build a sample that is representative for such variables.
The approach provides guidance for both numerical and categorical
variables, and its composition, if required. We have illustrated our
approach with three use cases based on Hugging Face repositories
using the HFCommunity dataset, and provided a tool implementa-
tion of the approach, including a replicability package.

As future work, we plan to extend our approach with support
for sampling from multiple datasets or for evolving datasets (i.e.,
adding or removing observations or variables). Current implemen-
tation is focused on building samples given an 𝜖 and a confidence
level, which ensures high representativeness but may result in large
samples. We plan to allow the sample size parameterization and
report how representativeness may be affected. Finally, we are also
interested in applying our approach to additional use cases.
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